Script computing the Primorial sequence

 

 

//* Primorial numbers

// Pn = ( 1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97 )

 

// OEIS for the Primorial sequence

A002110 = ( 1, 2, 6, 30, 210, 2310, 30030, 510510, 9699690, 223092870, 6469693230, 200560490130, 7420738134810, 304250263527210, 13082761331670030, 614889782588491410, 32589158477190044730, 1922760350154212639070, 117288381359406970983270, 7858321551080267055879090 )

computed = [ 0 <= n < LENGTH A002110 ] ( (Pn(n)) #! )

ERRORS = [ 0 <= n < LENGTH A002110 ] ( A002110  -  computed )

CALC computed

CALC ERRORS

 

 

Script output

 

 

// OEIS for the Primorial sequence

A002110 = ( 1, 2, 6, 30, 210, 2310, 30030, 510510, 9699690, 223092870, 6469693230, 200560490130, 7420738134810, 304250263527210, 13082761331670030, 614889782588491410, 32589158477190044730, 1922760350154212639070, 117288381359406970983270, 7858321551080267055879090 )

computed = [ 0 <= n < LENGTH A002110 ] ( (Pn(n)) #! )

ERRORS = [ 0 <= n < LENGTH A002110 ] ( A002110  -  computed )

CALC computed

(1, 2, 6, 30, 210, 2310, 30030, 510510, 9699690, 223092870, 6469693230, 200560490130, 7420738134810, 304250263527210, 13082761331670030, 614889782588491410, 32589158477190044730, 1922760350154212639070, 117288381359406970983270, 7858321551080267055879090)

 

CALC ERRORS

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

 

 

 

 Script computing the Compositorial sequence

 

!! Compositorial (n) = n! / ( n #! )

// OEIS for the Compositorial sequence

A036691               = ( 1, 4, 24, 192, 1728, 17280, 207360, 2903040, 43545600, 696729600, 12541132800, 250822656000, 5267275776000, 115880067072000, 2781121609728000, 69528040243200000, 1807729046323200000, 48808684250726400000, 1366643159020339200000 )

Cn = ( 1, 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28, 30, 32, 33, 34, 35, 36, 38, 39, 40, 42, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 60, 62, 63, 64, 65, 66, 68, 69, 70, 72 )

computed = [ 0 <= n < LENGTH A036691 ] ( Compositorial (Cn#n) )

ERRORS = [ 0 <= n < LENGTH A036691 ] ( A036691  -  computed )

CALC computed

CALC ERRORS

 

 

Script output

!! Compositorial (n) = n! / ( n #! )

A036691 = ( 1, 4, 24, 192, 1728, 17280, 207360, 2903040, 43545600, 696729600, 12541132800, 250822656000, 5267275776000, 115880067072000, 2781121609728000, 69528040243200000, 1807729046323200000, 48808684250726400000, 1366643159020339200000 )

Cn = ( 1, 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28, 30, 32, 33, 34, 35, 36, 38, 39, 40, 42, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 60, 62, 63, 64, 65, 66, 68, 69, 70, 72 )

computed = [ 0 <= n < LENGTH A036691 ] ( Compositorial (Cn#n) )

ERRORS = [ 0 <= n < LENGTH A036691 ] ( A036691  -  computed )

CALC computed

(1, 4, 24, 192, 1728, 17280, 207360, 2903040, 43545600, 696729600, 12541132800, 250822656000, 5267275776000, 115880067072000, 2781121609728000, 69528040243200000, 1807729046323200000, 48808684250726400000, 1366643159020339200000)

CALC ERRORS

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

 

 

Script computing the Primorial unit offsets

 

// look for primes at +1 and -1 from Primorials

 

Original source

// !! row (n, pn, pnp) = ( n, pn, pnp-1, pnp+1 )

// !! calcPNP (n, pn) = row ( n, pn,  pn #! )

// !! calcPN (n) = calcPNP ( n, Pn(n) )

// remaining = 28

// *{ remaining

// n = 30 - remaining

// CALC calcPN(n)

// }*

 

// alternative rendering of table

!! P(n) = n #!  ;  !! PNP (n) = P ( Pn n )

!! PNPm1 (n) = PNP(n) - 1  ;  !! PNPp1 (n) = PNP(n) + 1

 

// display as formatted table

tabulate [2 <= n <= 30] ( n, Pn n, PNPm1(n) , PNPp1(n)  )

 

// tables of prime counting functions

!! pi(x) = PIF x

// percent error of approximations - xLx and li specifically respectively

!! pct (x,apx) = 100* (pi x - apx) / (pi x)  ;   !! pxlx(x) = pct ( x, xLx x)  ;  !! pli(x) = pct ( x, li x)

// a table of pi, x/log x, and li giving values and percent error for each

tabulate [100 <= x <= 10000 <> 100] (  x, pi x, xLx x, pxlx x, li x, pli x  )

 

// table of prime counting parity functions

tabulate [900 <= x <= 1000 <> 1] (  x, pi x, mu x, OMEGA x, omega x, lambda x )

 

 

 

 

Linear correlation of Sigma Ln Prime

// ============================================================

// using primorial in factorized system
init "net.myorb.math.primenumbers.PowerLibrary" named "ln" op "LN"

!! check (n) = ln (n #!) - n

// 1 above first 100 primes found using Pn in sequence 1..100
pf = [ 1 <= n <= 100  ] ( check (1 + Pn n)  )
// list errors of of log primorial Pn n
CALC pf

 

// show as table

remaining = 100
*{ remaining
n = 101 - remaining ; pp1 = 1 + Pn n
CALC (n, pp1, check (pp1)  )
}*

!! lnp (n) = ln (n #!)
pp = [ 1 <= n <= 100  ] ( 1 + Pn n  )
pf = [ 1 <= n <= 100  ] ( lnp (1 + Pn n)  )
calc pp
calc pf

// regression that runs in real number application
lc = FITLINE  ( pf, pp  )
calc lc

 

Script output

(1, 3, -1.2082405307719460)

(2, 4, -2.2082405307719460)

(3, 6, -2.5988026183378450)

(4, 8, -2.6528924692825310)

(5, 12, -4.2549971964841600)

(6, 14, -3.6900478390226300)

(7, 18, -4.8568344949664100)

(8, 20, -3.9123955157999800)

(9, 24, -4.7769012998708200)

(10, 30, -7.4096054698843500)

(11, 32, -5.9756182653992100)

(12, 38, -8.3647003527549800)

(13, 42, -8.6511282860506600)

(14, 44, -6.8899281703571100)

(15, 48, -7.0397805686470500)

(16, 54, -9.0694886550949100)

(17, 60, -10.9919512111892000)

(18, 62, -8.8810773470158800)

(19, 68, -10.6763847276249400)

(20, 72, -10.4137048505836000)

(21, 74, -8.1232454094352000)

(22, 80, -9.7537975569682000)

(23, 84, -9.3349569491716000)

(24, 90, -10.8463205794394500)

(25, 98, -14.2716096009360600)

(26, 102, -13.6564890840947800)

(27, 104, -11.0217600958651600)

(28, 108, -10.3489312614032600)

(29, 110, -7.6575833791742000)

(30, 114, -6.9301955604618000)

(31, 128, -16.0860084740032000)

(32, 132, -15.2108111508021000)

(33, 138, -16.2908302249740000)

(34, 140, -13.3563562918433000)

(35, 150, -18.3524099858978000)

(36, 152, -15.3351301490829000)

(37, 158, -16.2788843437346000)

(38, 164, -17.1851341429278000)

(39, 168, -16.0671403305111000)

(40, 174, -16.9138487360133000)

(41, 180, -17.7264629301725000)

(42, 182, -14.5279658989068000)

(43, 192, -19.2756924708600000)

(44, 194, -16.0130022819552000)

(45, 198, -14.7297985532172000)

(46, 200, -11.4364937284927000)

(47, 212, -18.0846355950166000)

(48, 224, -24.6774638235565000)

(49, 228, -23.2525138060751000)

(50, 230, -19.8187918025209000)

(51, 234, -18.3677533489552000)

(52, 240, -18.8912897970237000)

(53, 242, -15.4064928635330000)

(54, 252, -19.8810399244013000)

(55, 258, -20.3319638395060000)

(56, 264, -20.7598098073282000)

(57, 270, -21.1650984277264000)

(58, 272, -17.5629796068466000)

(59, 278, -17.9389621006594000)

(60, 282, -16.3006074313256000)

(61, 284, -12.6551605336824000)

(62, 294, -16.9749879246653000)

(63, 308, -25.2481401770782000)

(64, 312, -23.5083472648989000)

(65, 314, -19.7621440743587000)

(66, 318, -18.0032423004815000)

(67, 332, -26.2011239251044000)

(68, 338, -26.3810409947520000)

(69, 348, -30.5317162148051000)

(70, 350, -26.6766442926028000)

(71, 354, -24.8101762356694000)

(72, 360, -24.9268538471812000)

(73, 368, -27.0214919991266000)

(74, 374, -27.0999135794828000)

(75, 380, -27.1623773744004000)

(76, 384, -25.2143423852197000)

(77, 390, -25.2507630416012000)

(78, 398, -27.2668267609141000)

(79, 402, -25.2728653336075000)

(80, 410, -27.2591501775647000)

(81, 420, -31.2212792576425000)

(82, 422, -27.1786464239601000)

(83, 432, -31.1125383338563000)

(84, 434, -27.0418006058540000)

(85, 440, -26.9573011927788000)

(86, 444, -24.8637314227337000)

(87, 450, -24.7567085349914000)

(88, 458, -26.6320251440972000)

(89, 462, -24.4986271011003000)

(90, 464, -20.3609000470143000)

(91, 468, -18.2145707893454000)

(92, 480, -24.0428701919344000)

(93, 488, -25.8546060688519000)

(94, 492, -23.6581619410572000)

(95, 500, -25.4455558453058000)

(96, 504, -23.2249656752061000)

(97, 510, -22.9925176586555000)

(98, 522, -28.7367676169022000)

(99, 524, -24.4771861528374000)

(100, 542, -36.1837668739908000)

 

 

!! lnp (n) = ln (n #!)

pp = [ 1 <= n <= 100  ] ( 1 + Pn n  )

pf = [ 1 <= n <= 100  ] ( lnp (1 + Pn n)  )

 

calc pp

(3, 4, 6, 8, 12, 14, 18, 20, 24, 30, 32, 38, 42, 44, 48, 54, 60, 62, 68, 72, 74, 80, 84, 90, 98, 102, 104, 108, 110, 114, 128, 132, 138, 140, 150, 152, 158, 164, 168, 174, 180, 182, 192, 194, 198, 200, 212, 224, 228, 230, 234, 240, 242, 252, 258, 264, 270, 272, 278, 282, 284, 294, 308, 312, 314, 318, 332, 338, 348, 350, 354, 360, 368, 374, 380, 384, 390, 398, 402, 410, 420, 422, 432, 434, 440, 444, 450, 458, 462, 464, 468, 480, 488, 492, 500, 504, 510, 522, 524, 542)

 

calc pf

(1.7917594692280540, 1.7917594692280540, 3.4011973816621550, 5.3471075307174690, 7.7450028035158400, 10.3099521609773700, 13.1431655050335900, 16.0876044842000200, 19.2230987001291800, 22.5903945301156500, 26.0243817346007900, 29.6352996472450200, 33.3488717139493400, 37.1100718296428900, 40.9602194313529500, 44.9305113449050900, 49.0080487888108000, 53.1189226529841200, 57.3236152723750600, 61.5862951494164000, 65.8767545905648000, 70.2462024430318000, 74.6650430508284000, 79.1536794205605500, 83.7283903990639400, 88.3435109159052200, 92.9782399041348400, 97.6510687385967400, 102.3424166208258000, 107.0698044395382000, 111.9139915259968000, 116.7891888491979000, 121.7091697750260000, 126.6436437081567000, 131.6475900141022000, 136.6648698509171000, 141.7211156562654000, 146.8148658570722000, 151.9328596694889000, 157.0861512639867000, 162.2735370698275000, 167.4720341010932000, 172.7243075291400000, 177.9869977180448000, 183.2702014467828000, 188.5635062715073000, 193.9153644049834000, 199.3225361764435000, 204.7474861939249000, 210.1812081974791000, 215.6322466510448000, 221.1087102029763000, 226.5935071364670000, 232.1189600755987000, 237.6680361604940000, 243.2401901926718000, 248.8349015722736000, 254.4370203931534000, 260.0610378993406000, 265.6993925686744000, 271.3448394663176000, 277.0250120753347000, 282.7518598229218000, 288.4916527351011000, 294.2378559256413000, 299.9967576995185000, 305.7988760748956000, 311.6189590052480000, 317.4682837851949000, 323.3233557073972000, 329.1898237643306000, 335.0731461528188000, 340.9785080008734000, 346.9000864205172000, 352.8376226255996000, 358.7856576147803000, 364.7492369583988000, 370.7331732390859000, 376.7271346663925000, 382.7408498224353000, 388.7787207423575000, 394.8213535760399000, 400.8874616661437000, 406.9581993941460000, 413.0426988072212000, 419.1362685772663000, 425.2432914650086000, 431.3679748559028000, 437.5013728988997000, 443.6390999529857000, 449.7854292106546000, 455.9571298080656000, 462.1453939311481000, 468.3418380589428000, 474.5544441546942000, 480.7750343247939000, 487.0074823413445000, 493.2632323830978000, 499.5228138471626000, 505.8162331260092000)

 

// regression that runs in real number application

lc = FITLINE  ( pf, pp  )

 

Linear regression

 Y = 6.98758 + 1.04715 * x

 

 

Wilson's theorem


// Wilson's theorem demonstration script

//   integers result from primes

!! wilsons (k) = ( (k - 1)! + 1 ) / k

ws = [ 0 < j < 50 ] ( wilsons j )      

prettyprint  ws 

 

ws =

[

1              2

2              1

3              1

                1.7500000000000000

5              5

                20.1666666666666667

7              103

                630.1250000000000000

                4480.1111111111111112

                36288.1000000000000000

11           329891

                3326400.0833333333333334

13           36846277

                444787200.0714285714285715

                5811886080.0666666666666667

                81729648000.0625000000000000

17           1230752346353

                19760412672000.0555555555555556

19           336967037143579

                6082255020441600.0500000000000000

                115852476579840000.0476190476190477

                2322315553259520000.0454545454545455

23           48869596859895986087

                1077167364120207360000.0416666666666667

                24817936069329577574400.0400000000000000

                596585001666576384000000.0384615384615385

                14936720782466875392000000.0370370370370371

                388888194657798291456000000.0357142857142858

29           10513391193507374500051862069

                294725399791323398484787200000.0333333333333334

31           8556543864909388988268015483871

                256963707943060088053923840000000.0312500000000000

                7973661725263440308097515520000000.0303030303030304

                255391694670937838103476305920000000.0294117647058824

                8435222829702975452789103132672000000.0285714285714286

                287031887955170692490740314931200000000.0277777777777778

37           10053873697024357228864849950022572972973

                362204028716482764376736304778444800000000.0263157894736843

                13410836345297464404102749335899340800000000.0256410256410257

                509947052029936083966007043497572433920000000.0250000000000000

41           19900372762143847179161250477954046201756097561

                796488728884852550194525286986684563456000000000.0238095238095239

43           32674560877973951128910293168477013254334511627907

                1373074160531223537212616637920772670619648000000000.0227272727272728

                59072701661965528178747240244769242007103078400000000.0222222222222223

                2600483062293047707868764380340385110095298560000000000.0217391304347827

47           117077067230044445741495860187239465807694718148085106383

                5387984198149337096728424065700249582691617341440000000000.0208333333333334

                253345216174205564711475286681089286500438497034240000000000.0204081632653062

]

 

 

In algebra and number theoryWilson's theorem states that a natural number n > 1 is a prime number if and only if the product of all the positive integers less than n is one less than a multiple of n.

That is (using the notations of modular arithmetic), the factorial (n-1)! Satisfies -1 (mod n) exactly when n is a prime number. In other words, any number n is a prime number if, and only if, (n − 1)! + 1 is divisible by n.[1]

https://en.wikipedia.org/wiki/Wilson%27s_theorem